A bootstrap method to avoid the effect of concurvity in generalised additive models in time series studies of air pollution.

نویسندگان

  • Adolfo Figueiras
  • Javier Roca-Pardiñas
  • Carmen Cadarso-Suárez
چکیده

BACKGROUND In recent years a great number of studies have applied generalised additive models (GAMs) to time series data to estimate the short term health effects of air pollution. Lately, however, it has been found that concurvity--the non-parametric analogue of multicollinearity--might lead to underestimation of standard errors of the effects of independent variables. Underestimation of standard errors means that for concurvity levels commonly present in the data, the risk of committing type I error rises by over threefold. METHODS This study developed a conditional bootstrap methology that consists of assuming that the outcome in any observation is conditional upon the values of the set of independent variables used. It then tested this procedure by means of a simulation study using a Poisson additive model. The response variable of this model is a function of an unobserved confounding variable (that introduces trend and seasonality), real black smoke data, and temperature. Scenarios were created with different coefficients and degrees of concurvity. RESULTS Conditional bootstrap provides confidence intervals with coverages close to nominal (95%), irrespective of the degree of concurvity, number of variables in the model or magnitude of the coefficient to be estimated (for example, for a concurvity of 0.85, bootstrap confidence interval coverage is 95% compared with 71% in the case of the asymptotic interval obtained directly with S-plus gam function). CONCLUSIONS The bootstrap method avoids the problem of concurvity in time series studies of air pollution, and is easily generalised to non-linear dose-risk effects. All bootstrap calculations described in this paper can be performed using S-Plus gam.boot software.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

THEORY AND METHODS A bootstrap method to avoid the effect of concurvity in generalised additive models in time series studies of air pollution

Background: In recent years a great number of studies have applied generalised additive models (GAMs) to time series data to estimate the short term health effects of air pollution. Lately, however, it has been found that concurvity—the non-parametric analogue of multicollinearity—might lead to underestimation of standard errors of the effects of independent variables. Underestimation of standa...

متن کامل

Exploring bias in a generalized additive model for spatial air pollution data.

During the past few years, the generalized additive model (GAM) has become a standard tool for epidemiologic analysis exploring the effect of air pollution on population health. Recently, the use of the GAM has been extended from time-series data to spatial data. Still more recently, it has been suggested that the use of GAMs to analyze time-series data results in air pollution risk estimates b...

متن کامل

بررسی و پیش بینی وضع آلاینده های هوای شهر کرمان با مدل سری های زمانی

  Anderson, H.R., 2009. Air pollution and mortality: A history. Atmospheric Environment, 43, pp. 142-152 .   Box, GEP. and Jenkins, G.M., 1976. Time series analysis: forecasting and control, San Francisco, Holden Day Pulications .   Duenas, C., Fernandez, M.C., Canete, S., Carretero,Liger E, 2005. Stocastic model to forecast ground level ozone concentration at urban and rural areas . Chemospher...

متن کامل

The severity of the relationship between daily air pollution and cardiovascular deaths in Ahvaz, Iran- using generalized additive models (GAMs) for seven years during March 2008 - March 2015

Abstract Background and objectives: Some epidemiological evidence has shown the relationship between environmental air pollution and adverse health effects. The aim of this study was to evaluate the effect of daily air pollution on daily cardiovascular mortality in Ahvaz city. Materials and Methods: In this ecological study, air pollution data was inquired from the Ahvaz Environmental Protectio...

متن کامل

Bayesian model averaging method for evaluating associations between air pollution and respiratory mortality: a time-series study

OBJECTIVE To demonstrate an application of Bayesian model averaging (BMA) with generalised additive mixed models (GAMM) and provide a novel modelling technique to assess the association between inhalable coarse particles (PM10) and respiratory mortality in time-series studies. DESIGN A time-series study using regional death registry between 2009 and 2010. SETTING 8 districts in a large metr...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of epidemiology and community health

دوره 59 10  شماره 

صفحات  -

تاریخ انتشار 2005